BSAI Northern rock sole

Carey McGilliard, James Ianelli, Andre E. Punt, Tom Wilderbuer, Dan Nichol, and Rebecca Haehn Nov 17, 2020

		nated or ast year for:	As estimated or recommended this year for:		
Quantity	2020	2021	2021*	2022*	
M (natural mortality rate)	0.15	0.15	0.15 (f) 0.17 (m)	0.15 (f) 0.17 (m)	
Tier	1a	1a	la	la	
Projected total (age 6+) biomass (t)	1,154,000	1,729,000	923,197	1,359,440	
Projected Female spawning biomass (t)	415,000	389,000	294,627	286,381	
B_0	546,800	546,800	476,820	476,820	
B_{MSY}	197,400	197,400	158,972	158,972	
F_{OFL}	0.147	0.147	0.157	0.157	
$maxF_{ABC}$	0.146	0.146	0.152	0.152	
F_{ABC}	0.142	0.142	0.152	0.152	
OFL (t)	168,000	251,800	145,180	213,783	
maxABC (t)	163,700	245,400	140,306	206,605	
ABC (t)	163,700	245,400	140,306	206,605	
	As detern	nined <i>last</i>	As determined this wear for		
Status	year	for:	As determined <i>this</i> year for:		
	2018	2019	2019	2020	
Overfishing	no	n/a	no	n/a	
Overfished	n/a	no	n/a	no	
Approaching overfished	n/a	no	n/a	no	

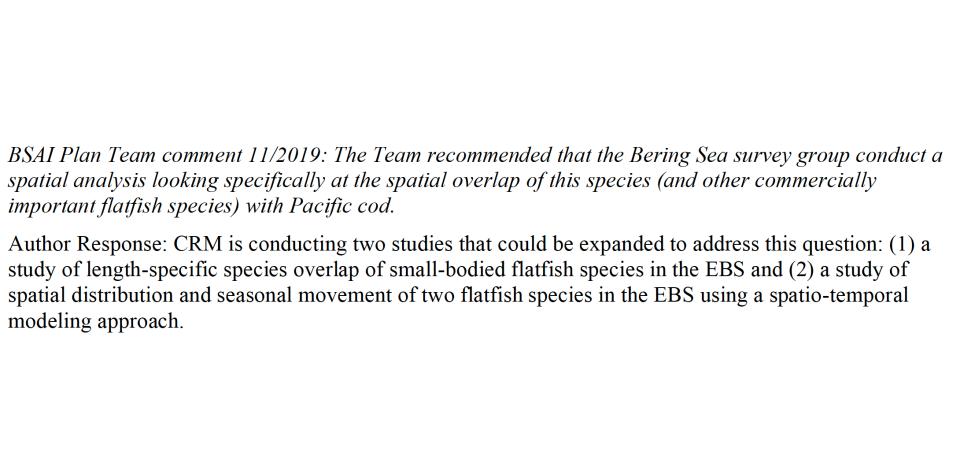
^{*} Projections are based on estimated catches of 25,800 t used in place of maximum permissible ABC for 2020 and 47,500 t used in place of maximum permissible ABC for 2021 and 2022. The final catch for 2020 was set equal to the 2019 final catch. The 2021 and 2022 catch was estimated as the average over the past decade of final catches.

Responses to SSC and Plan Team Comments on Assessments in General

The SSC recommends thinking beyond the current (2020) situation to develop methods for making stock assessment analyses more robust to possible future survey reductions/loss. These may include:

- Renewed investigation of data conflicts in the assessment models, perhaps addressed through data weighting and/or identification of un-modelled processes, or occasional anomalous data points.
- Model-based survey time series (e.g., vector-autoregressive spatio-temporal (VAST) models) that can accommodate incomplete data, changes in survey design, or alternative survey platforms and still produce indices of abundance with statistical variance estimates. These may be particularly helpful for stocks (e.g., Tier 4 crab and Tier 5 groundfish) where harvest levels are informed directly by trends in survey data rather than solely by the results of the stock assessment.
- Exploration of harvest control rules that are explicitly linked to survey and assessment uncertainty and the lag between surveys and assessments.

A data conflict between recent survey biomass and age composition data was explored in the 2020 assessment by evaluating an exploratory model downweighting age composition data. The RACE Division is now providing VAST survey biomass estimates for northern rock sole. Due to COVID-19, these estimates were not explored within models for this assessment cycle, but is planned for the next assessment cycle.


Responses to SSC and Plan Team Comments on Assessments specific to this assessment

Four new models (18.1-4) were introduced this year in addition to the base model that has been in use since 2006 (15.1). The new models all estimated separate natural mortality rates for males. Model 18.2 estimates survey catchability in addition to male M and model 18.3 adds an offset for male selectivity in the fishery (allowing the asymptote to differ from females) based on earlier recommendations to address sex-specific targeting in the fishery. Model 18.4 was an equally weighted ensemble of the other four models. This model was included in response to an SSC request in October to pursue ensemble modeling in this assessment. While the models resulted in considerable differences in spawning stock biomass, the resulting reference points differed little among models. Model 15.1 provided a better fit to the survey sex ratios and survey age composition. Therefore, and because the other models were not presented in September, the PT recommended model 15.1 but noted that model 18.3 was a good candidate for future assessments.

Model 18.3 is the author's preferred model for 2020.

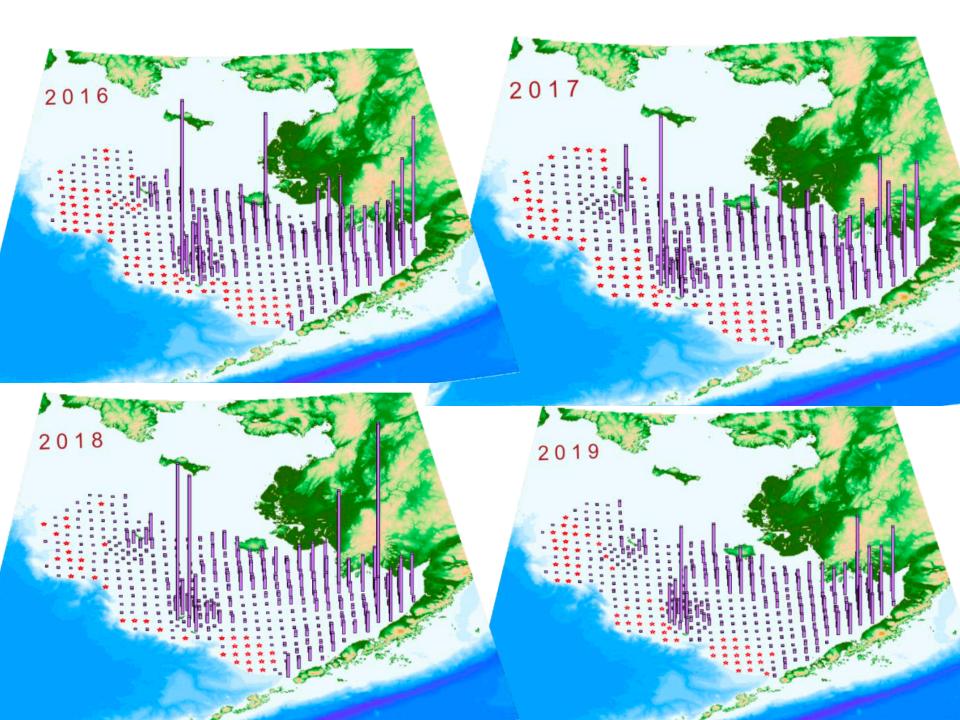
BSAI Plan Team comment 11/2018: The Team thanks the authors for volunteering to examine a model averaging approach. The Team recommends that the authors consider alternative weightings if they decide to pursue model averaging further; noting that, if the ensemble consists of nested models, the choice of weighting approach may be simplified somewhat. The Team also encourages the authors to consider whether the present ensemble might usefully be expanded by including models that span a greater range of structural uncertainty. Finally, the Team recommends that the authors further investigate Model 18.3, which may be the most biologically plausible model in the present ensemble.

Model 18.3 is presented as the author's preferred model in 2020.

Assessment-related considerations	Population dynamics considerations	Environmental/ ecosystem considerations	Fishery Performance considerations
Level 2: Substantially increased concerns	Level 1: no increased concerns	Level 1: no increased concerns	Level 1: no increased concerns

+

° Risk table


2, 1, 1, 1,

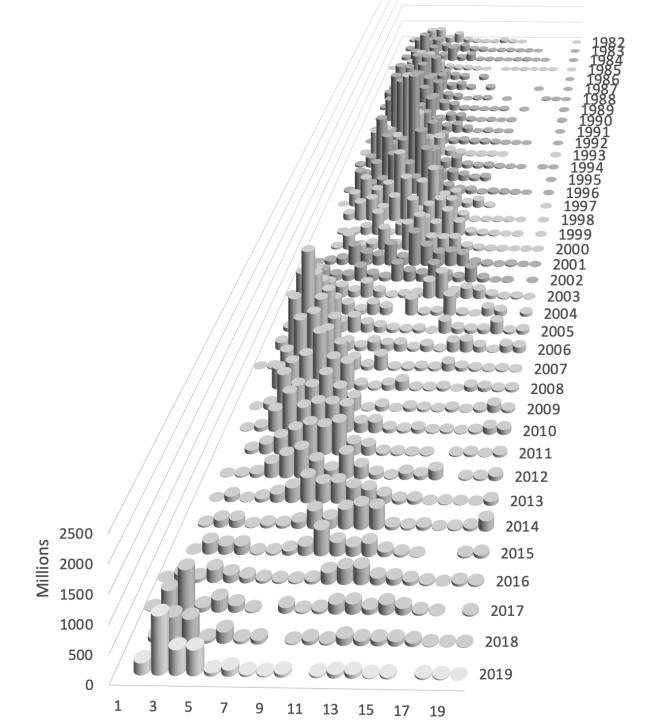
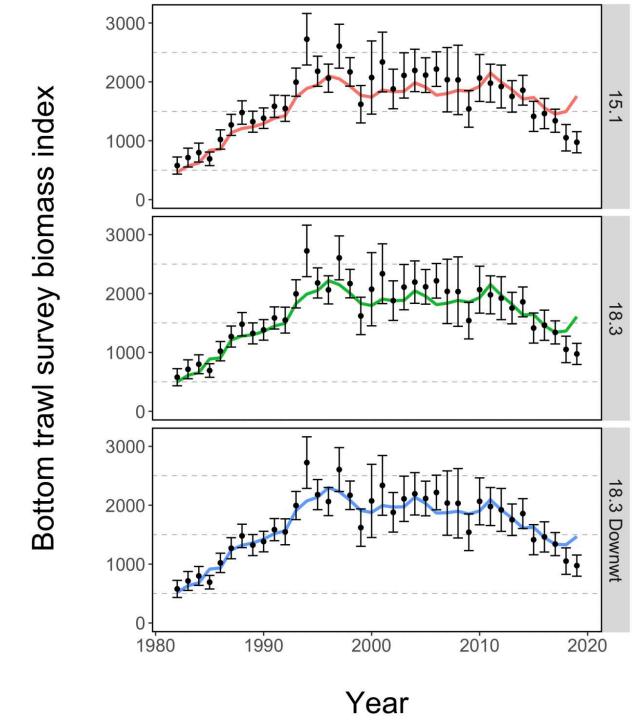
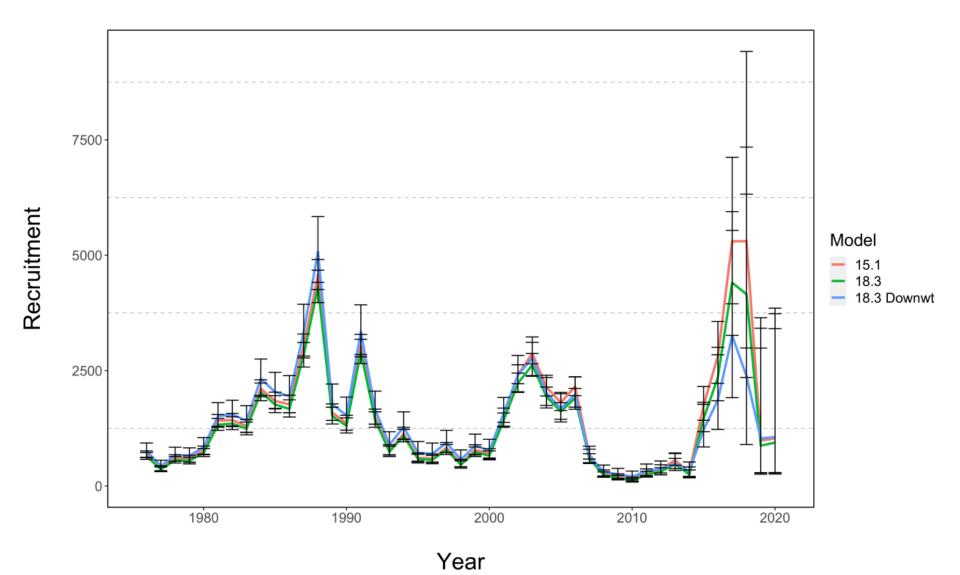
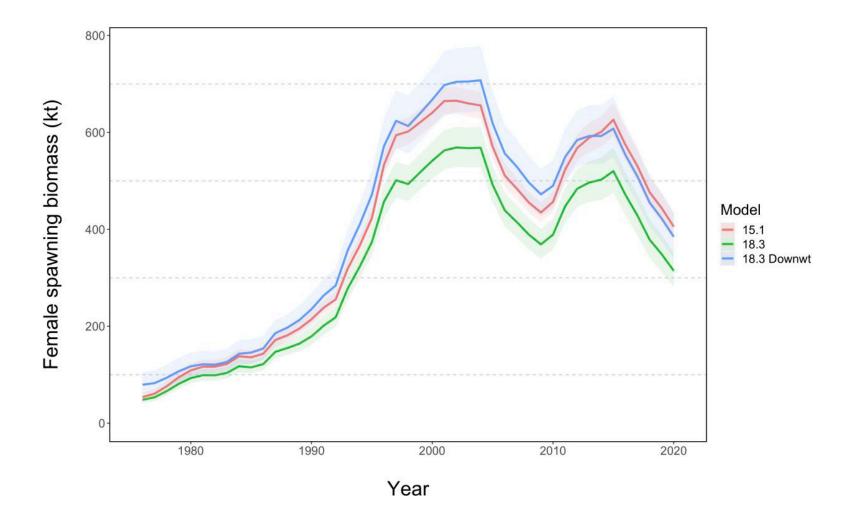
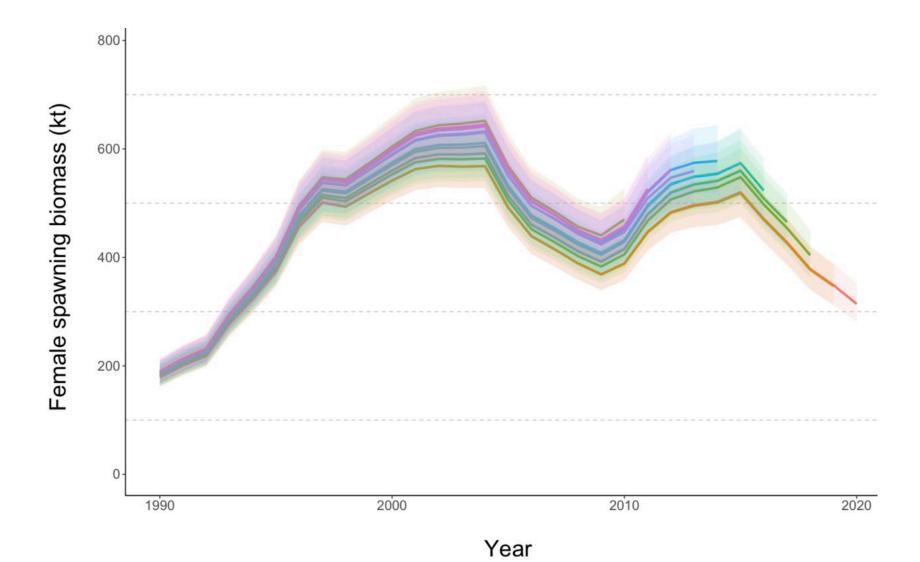

Fishery patterns

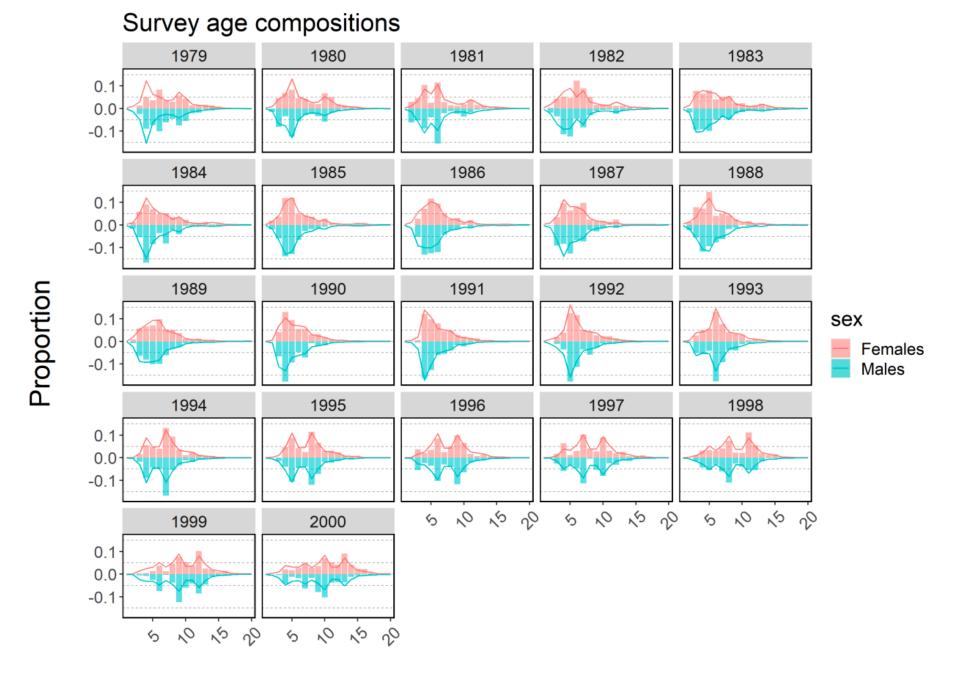
Table 8.2. Proportion of catches by NMFS reporting area through Oct 25, 2020. Green-white shading indicates areas with high proportions of catches (green) to low proportions of catches (white).


		aicate															
Year	509	511	512	513	514	516	517	518	519	521	522	523	524	540	541	542	543
1991	0.00	0.16	0.00	0.13	0.16	0.03	0.15	0.01	0.03	0.24	0.04	0.00	0.00	0.04	0.00	0.00	0.00
1992	0.00	0.16	0.00	0.18	0.15	0.04	0.13	0.02	0.03	0.19	0.04	0.00	0.00	0.07	0.00	0.00	0.00
1993	0.20	0.00	0.00	0.20	0.12	0.04	0.15	0.01	0.01	0.13	0.00	0.01	0.04	0.07	0.01	0.01	0.00
1994	0.27	0.00	0.00	0.23	0.05	0.06	0.15	0.01	0.03	0.12	0.00	0.01	0.01	0.00	0.04	0.03	0.00
1995	0.26	0.00	0.00	0.20	0.06	0.03	0.22	0.02	0.05	0.08	0.00	0.01	0.02	0.00	0.03	0.02	0.01
1996	0.32	0.00	0.00	0.18	0.06	0.03	0.19	0.01	0.05	0.06	0.00	0.01	0.01	0.00	0.03	0.02	0.02
1997	0.23	0.00	0.00	0.23	0.09	0.01	0.19	0.00	0.06	0.10	0.00	0.01	0.02	0.00	0.04	0.02	0.01
1998	0.29	0.00	0.00	0.18	0.02	0.02	0.21	0.01	0.05	0.12	0.00	0.01	0.01	0.00	0.05	0.03	0.01
1999	0.25	0.00	0.00	0.17	0.04	0.04	0.23	0.01	0.03	0.12	0.00	0.01	0.00	0.00	0.05	0.02	0.01
2000	0.29	0.00	0.00	0.19	0.03	0.01	0.21	0.01	0.02	0.12	0.00	0.01	0.01	0.00	0.05	0.03	0.01
2001	0.26	0.00	0.00	0.19	0.02	0.05	0.16	0.01	0.05	0.16	0.00	0.01	0.01	0.00	0.03	0.03	0.02
2002	0.23	0.00	0.00	0.18	0.04	0.04	0.20	0.00	0.04	0.15	0.00	0.00	0.02	0.00	0.04	0.03	0.02
2003	0.30	0.00	0.00	0.18	0.11	0.05	0.10	0.00	0.04	0.13	0.00	0.00	0.02	0.00	0.04	0.02	0.01
2004	0.31	0.00	0.00	0.13	0.11	0.07	0.09	0.00	0.05	0.16	0.00	0.00	0.03	0.00	0.03	0.02	0.01
2005	0.29	0.00	0.00	0.14	0.12	0.06	0.07	0.00	0.03	0.15	0.00	0.00	0.06	0.00	0.04	0.01	0.01
2006	0.31	0.00	0.00	0.17	0.08	0.02	0.11	0.00	0.02	0.21	0.00	0.00	0.02	0.00	0.04	0.02	0.01
2007	0.25	0.00	0.00	0.16	0.12	0.02	0.10	0.00	0.02	0.20	0.00	0.00	0.03	0.00	0.06	0.02	0.01
2008	0.44	0.00	0.00	0.13	0.04	0.02	0.11	0.00	0.02	0.15	0.00	0.00	0.03	0.00	0.02	0.01	0.01
2009	0.47	0.00	0.00	0.10	0.02	0.03	0.12	0.00	0.01	0.15	0.00	0.00	0.03	0.00	0.03	0.03	0.01
2010	0.34	0.00	0.00	0.12	0.06	0.13	0.09	0.00	0.02	0.16	0.00	0.00	0.00	0.00	0.04	0.02	0.02
2011	0.36	0.00	0.00	0.18	0.08	0.04	0.15	0.00	0.03	0.11	0.00	0.00	0.01	0.00	0.03	0.01	0.00
2012	0.39	0.00	0.00	0.12	0.12	0.02	0.14	0.00	0.03	0.10	0.00	0.00	0.00	0.00	0.06	0.01	0.00
2013	0.36	0.00	0.00	0.17	0.04	0.06	0.15	0.00	0.01	0.16	0.00	0.00	0.00	0.00	0.02	0.01	0.00
2014	0.37	0.00	0.00	0.24	0.07	0.04	0.11	0.00	0.02	0.12	0.00	0.00	0.00	0.00	0.02	0.01	0.00
2015	0.27	0.00	0.00	0.20	0.23	0.04	0.07	0.00	0.03	0.14	0.00	0.00	0.00	0.00	0.02	0.01	0.00
2016	0.21	0.00	0.00	0.28	0.22	0.07	0.05	0.01	0.03	0.08	0.00	0.00	0.02	0.00	0.02	0.01	0.00
2017	0.35	0.00	0.00	0.25	0.13	0.06	0.05	0.00	0.01	0.07	0.00	0.00	0.01	0.00	0.03	0.02	0.01
2018	0.24	0.00	0.00	0.24	0.23	0.04	0.06	0.00	0.02	0.05	0.00	0.00	0.07	0.00	0.03	0.01	0.01
2019	0.20	0.00	0.00	0.31	0.24	0.05	0.03	0.00	0.02	0.05	0.00	0.00	0.04	0.00	0.03	0.02	0.01
2020	0.28	0.00	0.00	0.23	0.13	0.05	0.08	0.01	0.03	0.13	0.00	0.00	0.03	0.00	0.03	0.02	0.01


_		Jan-	April-		
Fishery patterns	Year	March	June	July-Sep	Oct-Dec
i isliely patterns	1991	0.61	0.22	0.16	0.02
	1992	0.56	0.15	0.24	0.05
	1993	0.68	0.17	0.12	0.03
	1994	0.78	0.14	0.05	0.03
	1995	0.68	0.12	0.20	0.01
	1996	0.57	0.28	0.14	0.02
By season	1997	0.60	0.22	0.16	0.02
2, 23.33	1998	0.71	0.15	0.11	0.03
	1999	0.63	0.23	0.11	0.03
	2000	0.75	0.16	0.08	0.01
	2001	0.57	0.16	0.24	0.03
	2002	0.64	0.19	0.16	0.01
Things have changed!	2003	0.60	0.22	0.18	0.00
Things have changed:	2004	0.68	0.27	0.05	0.00
	2005	0.57	0.34	0.09	0.00
	2006	0.49	0.24	0.26	0.01
	2007	0.53	0.19	0.27	0.00
	2008	0.64	0.21	0.10	0.04
	2009	0.69	0.15	0.12	0.04
	2010	0.57	0.13	0.24	0.06
	2011	0.68	0.20	0.10	0.03
	2012	0.80	0.14	0.04	0.02
	2013	0.68	0.17	0.12	0.03
	2014	0.69	0.22	0.06	0.03
	2015	0.64	0.23	0.11	0.02
	2016	0.48	0.44	0.06	0.02
	2017	0.42	0.46	0.10	0.02
	2018	0.38	0.55	0.05	0.01
	2019	0.34	0.57	0.07	0.03
	2020*	0.44	0.30	0.23	0.03






Survey fits By model

Age (yrs)

Fishery age compositions 1979 1980 1981 1982 1983 0.2 0.1 0.0 -0.1 -0.2 1984 1985 1986 1987 1988 0.2 0.1 0.0 -0.1 Proportion -0.2 sex 1989 1990 1991 1992 1993 **Females** 0.2 Males 0.1 0.0 -0.1 -0.2 10 1/2 50 5 10 15 20 1994 1998 1999 0.2 0.1 0.0 -0.1

Age (yrs)

5 10 15

-0.2

6,0

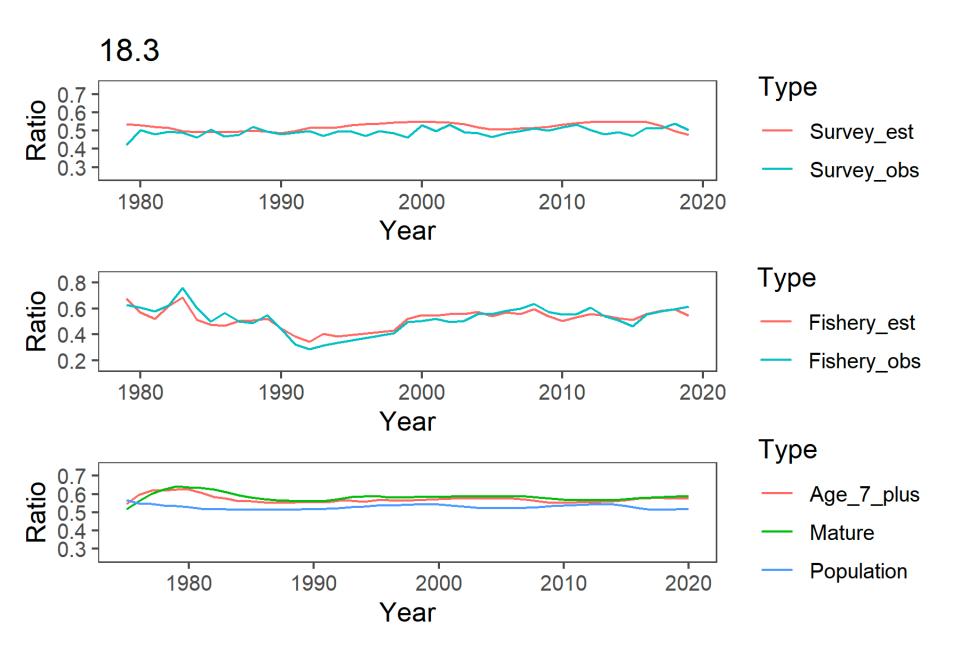


Table 8.7. Components of the objective function for Models 15.1, 18.3, and the exploratory model based on 18.3, but with 75% down-weighting of survey and age composition data. The age composition components (and therefore the total likelihood) from the exploratory model cannot be compared directly to the other two models because of the differences in data weighting.

			18.3
Likelihood Component	15.1	18.3	Downwt*
Total	1599	1476	519
Survey Biomass	87	59	44
Survey Age	680	673	188
Fishery Age	646	541	168

^{*}Cannot directly compare values in grey boxes to the other models due to smaller input sample sizes

Tier 3 projected catch

Year	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6	Scenario 7
2020	25,800	25,800	25,800	25,800	25,800	25,800	25,800
2021	63,503	47,500	31,298	31,895	0	77,023	63,503
2022	59,354	63,459	33,771	34,382	0	68,208	59,354
2023	74,338	77,440	40,212	40,917	0	83,899	90,557
2024	99,683	100,581	50,139	51,000	0	117,340	119,382
2025	116,795	117,455	60,518	61,533	0	135,810	137,327
2026	126,943	127,423	68,336	69,444	0	145,304	146,407
2027	126,086	126,433	71,130	72,231	0	141,610	142,396
2028	117,446	117,696	69,680	70,702	0	129,346	129,899
2029	107,132	107,313	66,470	67,393	0	116,133	116,522
2030	99,154	99,285	63,644	64,487	0	105,658	105,992
2031	93,587	93,700	61,995	62,786	0	96,002	96,254
2032	87,388	87,476	60,434	61,183	0	89,441	89,597
2033	83,734	83,793	59,121	59,836	0	86,438	86,534

		nated or ast year for:	As estimated or recommended this year for:		
Quantity	2020	2021	2021*	2022*	
M (natural mortality rate)	0.15	0.15	0.15 (f) 0.17 (m)	0.15 (f) 0.17 (m)	
Tier	1a	1a	la	la	
Projected total (age 6+) biomass (t)	1,154,000	1,729,000	923,197	1,359,440	
Projected Female spawning biomass (t)	415,000	389,000	294,627	286,381	
B_0	546,800	546,800	476,820	476,820	
B_{MSY}	197,400	197,400	158,972	158,972	
F_{OFL}	0.147	0.147	0.157	0.157	
$maxF_{ABC}$	0.146	0.146	0.152	0.152	
F_{ABC}	0.142	0.142	0.152	0.152	
OFL (t)	168,000	251,800	145,180	213,783	
maxABC (t)	163,700	245,400	140,306	206,605	
ABC (t)	163,700	245,400	140,306	206,605	
	As detern	nined <i>last</i>	As determined <i>this</i> year for:		
Status	year	for:			
	2018	2019	2019	2020	
Overfishing	no	n/a	no	n/a	
Overfished	n/a	no	n/a	no	
Approaching overfished	n/a	no	n/a	no	

^{*} Projections are based on estimated catches of 25,800 t used in place of maximum permissible ABC for 2020 and 47,500 t used in place of maximum permissible ABC for 2021 and 2022. The final catch for 2020 was set equal to the 2019 final catch. The 2021 and 2022 catch was estimated as the average over the past decade of final catches.